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Abstract

A series of repeated pulses and delays applied to a spin system generates a steady state. This is relatively easy to calculate for a single
spin, but coupled systems present real challenges. We have used Maple, a computer algebra program to calculate one- and two-spin sym-
bolically, and larger systems numerically. The one-spin calculations illustrate and validate the methods and show how the steady-state
free precession method converges to continuous wave NMR. For two-spin systems, we have derived a general formula for the creation of
double-quantum signals as a function of irradiation strength, coupling constant, and chemical shift difference. The calculations on three-
spin and larger systems reproduce and extend previously published results. In this paper, we have shown that the approach works well for
systems in literature. However, the formalism is general and can be extended to more complex spin systems and pulses sequences.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper develops an approach to steady-state meth-
ods for creating ‘‘interesting’’ spin density matrices. Most
current NMR experiments start with the density matrix
at equilibrium and manipulate it with a series of pulses
and delays [1–3]. However, non-selective pulses and J-cou-
plings can be somewhat crude tools for this work. Steady-
state methods offer an alternative approach [4]. In this case,
the effect of a repeated pulse sequence is balanced against
relaxation until a steady state is achieved. This has clear
analogies to CW methods [5–7]. Steady-state methods
can create otherwise-inaccessible states of the spin system.
Furthermore, data can be acquired more quickly, since
there are no relaxation delays. This technique has been rel-
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atively little explored in the general case of non-trivial pulse
sequences and complex spin systems.

Solving for this steady state requires a different set of
tools from standard product–operator methods, particu-
larly because relaxation is a necessary part of the calcula-
tion. Computer algebra methods, such as Maple or
Mathematica are extremely helpful [8–14]. They efficiently
provide correct and lucid symbolic solutions to the simpler
cases, and reliable numerical solutions for systems in which
the algebra gets out of hand. In this paper we explore
steady-state solutions for a single spin-1

2
and systems of

coupled spins.
Steady-state methods are not new. Carr described the

steady-state free-precession (SSFP) method in 1958 [4].
Artifacts from fast pulsing in Fourier transform NMR
were recognized as steady-state effects by Freeman and Hill
[15] and more general steady states were analyzed [16].
More recently, steady-state methods in medical imaging
have led to much faster acquisitions, even real-time imaging
[17–21]. Since the bulk of this work is aimed at anatomical
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Table 1
Spherical tensor basis for the Liouville Space of a single spin-1

2

j0Þ ¼ 1ffiffiffi
2
p 1

j1þ1Þ ¼ �ðIx þ iIyÞ
j10Þ ¼

ffiffiffi
2
p

Iz

j1�1Þ ¼ ðIx � iIyÞ

1 http://www.maplesoft.com/
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or relaxation-weighted images, most of the analysis of
steady-state experiments has been based on a system of a
single spin-1

2
, which can be described by the Bloch equa-

tions. Some researchers have looked at steady states of cou-
pled spin systems, but the driving force was simply CW
irradiation. Complete descriptions of steady-state methods
are not available in literature. In this paper, we provide a
general formalism for dealing with any spin system sub-
jected to any pulse sequence. The purpose here is to estab-
lish the approach, and future work will present some of the
applications.

In order to validate this formalism, we explore some of
the published cases. An important example is the SSFP
method [4,22,23]. In this case, the excitation consists of a
series of identical rf pulses, followed by delays. In the limit
of short delays, this becomes equivalent to CW irradiation
with the time-averaged rf power. We show that our formal-
ism not only reproduces the CW limit, but also shows what
happens when the SSFP approximation breaks down. A
more modern example is the direct creation of multiple-
quantum coherence [5,6,24,25]. Strong CW irradiation of
coupled spin systems can produce signals at multiple-quan-
tum frequencies. An approximate symbolic solution for
two coupled spins is available in literature [26], which we
are able to reproduce and extend with a Maple derivation.
Finally, Worvill [7] used saturating CW rf as a way of
probing spin relaxation in coupled spin systems. This pre-
sents a challenging problem, since it tests all aspects of
our method: the description of the spin system, the descrip-
tion of the irradiation and the description of relaxation. We
have repeated this calculation numerically, using a simpler
model of relaxation, and have reproduced the general fea-
tures of the published spectra. Since we use a Liouville
space method, incorporating more sophisticated relaxation
mechanisms is straightforward, but not essential to validat-
ing our formalism.

A formalism does more than simply describing an
experiment, it also provides a method for optimizing it.
The results from a steady-state calculation may not be
intuitively clear or easy to picture. Therefore, modern
optimization methods can be very useful in fine-tuning
a steady-state method. Computer algebra can be of great
benefit here, since it can provide derivatives with respect
to experimental parameters. We have done some
preliminary work on this [27], and future papers will
explore this aspect as well. In this paper, we present
and validate a general formalism for describing steady-
state methods and hope this work will renew interest in
this technique.

2. Liouville space formulation

2.1. Outline of the formalism

In this section, we re-derive the formal set of equations
in Liouville space to calculate the steady-state density
matrix. This necessarily includes a relaxation matrix; in
the present case, we use a simple random-field mechanism,
but more sophisticated relaxation can be incorporated eas-
ily. We can also include a continuous rf field, to calculate
the CW spectrum for any values of the parameters. How-
ever, a much more powerful approach is to embed a pulse
sequence into the formulation. The same formalism can
then be used to calculate the steady-state created by a more
complex pulse sequence with explicit pulses and delays. For
this paper, we apply only the simple pulse–delay SSFP
sequence, but there is nothing in the theory that restricts
us to this experiment.

For a single spin, the Liouville space description corre-
sponds directly to the Bloch equations, and the calculations
are easy. We use the computer algebra program Maple1 to
symbolically derive the CW solution. Next, we derive the
symbolic SSFP solution, and show how the pulse flip angle
and the delay are combined to provide the same effect as
the CW field. This can be done exactly, or in an approxi-
mate fashion, in which the delay is assumed to be small
compared to the relaxation times and the time associated
with the offset between the rf and the Larmor frequency.
This approximate solution converges to the CW solution,
and represents the SSFP experiment.

For two spins, the calculation is considerably more dif-
ficult. As well as the rf power, we now must consider the
chemical shift difference and the coupling constant. There
are some approximate analytical calculations of the dou-
ble-quantum intensity [26], which we are able to derive
and extend symbolically. We also use Maple to explore this
spectroscopy numerically, in order to get a feeling for how
a coupled spin system responds. For three or more spins,
symbolic calculations are out of the question, but numeri-
cal calculations are certainly feasible. Worvill [7] had
looked at the response of a three-spin system, in order to
test whether it was sensitive to the exact nature of the relax-
ation mechanism. Because we use a simpler relaxation
model than Worvill, the spectra do not match exactly,
but the basic resemblance is very strong.

The basic tool for these calculations is the density
matrix. It encodes all possible information about a spin
system and the measurements we can make to extract that
information. We use the Liouville space method [28] to rep-
resent the density matrix and determine solutions of the
continuous wave and pulsed NMR experiments.
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In this paper, j0Þ; j1þ1Þ; j10Þ and j1�1Þ represent the four
observables for one single spin-1

2
system in the Liouville

space, see Table 1, following the notation of Bain and Mar-
tin [28].

These observables form a basis for a single spin system,

fj0Þ; j1þ1Þ; j10Þ; j1�1Þg; ð1Þ

and combine to form bases for multiple spin-1
2

systems by
using direct products of the single spin system basis.

The density operator is a vector in Liouville space and
the equation of motion for the density matrix vectors is
expressed as

oq=ot ¼ �iLq�Rðq� qeqÞ; ð2Þ

where q is the state vector of the spin system and qeq is the
equilibrium state, L is the Liouvillian matrix encoding
information about Larmor frequencies, chemical structure
and couplings (if the spin system is multiple), and R is the
relaxation matrix. Please note that iLqeq ¼ 0.

In the Liouville space, observables are detected by tak-
ing the dot (scalar) product between two Liouville space
vectors. This is equivalent to the trace product in the oper-
ator formalism [28,29], i.e.

ðP jQÞ ¼ traceðP̂ Q̂Þ; ð3Þ

where, on the left-hand side, P and Q are Liouville space
vectors, whereas the right-hand side P̂ and Q̂ denote Hil-
bert space operators. We can only detect the single quan-
tum signal, which is j1þ1Þ in our basis, representing the
total x–y magnetization precessing in the positive direction.
Fig. 1. The simplest pulsed NMR experiment.
2.2. General solution for the continuous wave case

In continuous wave (CW) NMR experiments, a contin-
uous radio frequency field, B1, is applied, making the
evolution

oq=ot ¼ �iðL þ BÞq�Rðq� qeqÞ; ð4Þ

where B is the matrix for the effect of the rf field B1. The
next section will give these matrices for a single spin sys-
tem. Because j0Þ, the total number of spins, is a constant,
we only consider the parts ðj1þ1Þ; j10Þ and j1�1ÞÞ of these
matrices in the computation. These components represent
the x–y and z magnetization.

At steady state,

oq=ot ¼ 0: ð5Þ

Considering Eqs. (4) and (5), we get the general expression
for calculating the steady state:

qSS ¼ ðiðL þ BÞ þ RÞ
�1Rqeq: ð6Þ

We can solve the single spin system symbolically using Ma-
ple library functions. For two-spin systems, such general
methods fail, and we have written our own Gaussian elim-
ination procedures designed using knowledge of the struc-
ture of the Liouvillians to keep intermediate symbolic
expressions from exploding. For arbitrary systems, we need
to use numerical methods.

2.3. General solution for the pulsed case

We consider pulsed NMR experiments composed of
hard pulses and delays. In the first case we can ignore pre-
cession and relaxation ðL ¼ R ¼ 0Þ, and in the second
there is no rf field ðB1 ¼ 0Þ. We solve the corresponding
reduced systems separately.

The effect of a hard pulse is equivalent to a rotation of
the reference frame. A rotation for spherical tensors is
defined by a Wigner rotation matrix [30] and the direct
product provides the rotation for multiple spins. The fol-
lowing equation gives the effect of a hard pulse:

qþ ¼ W ðaÞq�; ð7Þ
where q� is the state before the pulse, qþ is the state after
the pulse, W ðaÞ is the rotation matrix around the y-axis,
a is the flip angle which is related to the strength of the
radio frequency field B1. Hard pulses correspond to the
limit in which cB1 !1 and pulse width! 0, but the flip
angle a remains constant.

For short delays, we have the following approximation:

cB1 �
a

T R

; ð8Þ

where T R is the delay time.
Fig. 1 displays the simplest steady state pulse sequence.

At each time point, we can calculate the spin states
qa; qb; qc; qd. When the spin system is at the steady state,
qa ¼ qc and qb ¼ qd. We can use equations for the spin
dynamics to relate spin states in different repeat times,
and then solve these equations for the steady-state value.
In this paper, the measured signal is qb which is corre-
sponded to the echo signal in [22]. Gyngell [22] and
Hanicke and Vogel [19] discuss the solution of a single spin
system at the time point a and b. In this paper, we give a
general full expression and general approximate expression
for an SSFP experiment on a system of n spins.

In order to calculate the spin states at different time
points, we need to solve Eq. (2). Considering the fact that
iLqeq ¼ 0, Eq. (2) can be reformulated as:

d

dt
ðq� qeqÞ ¼ ð�iL �RÞðq� qeqÞ: ð9Þ

So the principal solution of Eq. (2) is:

qðtÞ ¼ e�ðiLþRÞtðq0 � qeqÞ þ qeq; ð10Þ

where q0 is the state at time t ¼ 0 which is the initial state
when the delay starts.
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Based on Fig. 1, the states qa; qb, and qc are related by
affine equations:

qb ¼ e�ðiLþRÞ
T R ðqa � qeqÞ þ qeq ð11Þ

qc ¼ W ðaÞqb; ð12Þ

where T R is the repeat time—the time between successive
pulses.

Because qc is equal to qa at the steady state, solving Eqs.
(11) and (12), we get the general analytic solution for SSFP
experiments:

qb ¼ ð1� e�ðiLþRÞT R W ðaÞÞ�1ð1� e�ðiLþRÞT RÞqeq; ð13Þ

where 1 is an identity matrix which has the same size as the
Liouvillian matrix and the relaxation matrix.

It is difficult to calculate qb symbolically for a multiple-
spin system using Eq. (13). We will give the symbolic solu-
tion qb for a single-spin system and use Eq. (13) in the
numerical computation for multiple-spin systems.

In order to analyze SSFP and discover the relationship
between parameters such as the repeat time, relaxation
times, Larmor frequencies, and others, we use the following
equation to approximately calculate qb when the repeat
time of pulses is very short:

oq=ot � qb � qa

T R

: ð14Þ

Replacing the left side of Eq. (2), we get a new equation:

qb � qa

T R

� �iLqb �Rðqb � qeqÞ: ð15Þ

Solving Eqs. (15) and (12), qb is expressed:

qb � T Rð1þ ðiL þRÞT R � W ðaÞÞ�1Rqeq: ð16Þ

The above equation is the general approximate expression
for an SSFP experiment on a system of n spins. Comparing
Eqs. (13) and (16) , it is cheaper to calculate qb using Eq.
(16) which does not require the computation of the expo-
nential of a complex matrix.
3. Solutions of a single spin-1
2

system

First, we list each matrix for a single spin system in our
calculation. All of these matrices are constructed in the
basis Eq. (1).

The Liouvillian matrix of a single spin-1
2

system is:

L ¼

0 0 0 0

0 Dx 0 0

0 0 0 0

0 0 0 �Dx

0
BBBB@

1
CCCCA ð17Þ

where Dx is the resonance offset ðx� x0Þ, and x0 is the
center frequency.
The relaxation matrix of a single spin-1
2

system is:

R ¼

0 0 0 0

0 1
T 2

0 0

0 0 1
T 1

0

0 0 0 1
T 2

0
BBBB@

1
CCCCA ð18Þ

where T 1 and T 2 are the spin–lattice and spin–spin relaxa-
tion times.

The B matrix for the effect of CW acting on a single
spin-1

2
system along the x-axis is:

B ¼

0 0 0 0

0 0 � 1ffiffi
2
p cB1 0

0 � 1ffiffi
2
p cB1 0 1ffiffi

2
p cB1

0 0 1ffiffi
2
p cB1 0

0
BBBB@

1
CCCCA ð19Þ

where c is the gyromagnetic ratio and B1 is the strength of
the radio-frequency.

The rotation matrix, which rotates around the y-axis,
for the effect of a pulse acting on a single spin-1

2
system in

the Liouville space is:

WðaÞ ¼

1 0 0 0

0 ðcos ða=2ÞÞ2 1ffiffi
2
p sin ðaÞ ðsin ða=2ÞÞ2

0 � 1ffiffi
2
p sin ðaÞ cos ðaÞ 1ffiffi

2
p sin ðaÞ

0 ðsin ða=2ÞÞ2 � 1ffiffi
2
p sin ðaÞ ðcos ða=2ÞÞ2

0
BBBB@

1
CCCCA
ð20Þ

where a is the flip angle.
All of matrices L;R;B and W are 4-by-4 which corre-

sponds to the basis Eq. (1). As we said before, in order
to avoid singular matrices, we only consider the subspace
spanned by fj1þ1Þ; j10Þ; j1�1Þg in the computation. In gen-
eral, when we set up multiple spin-1

2
systems, we need to

take direct-products of 4-by-4 matrices first, before elimi-
nating the total magnetization component. Often, the equi-
librium is given as:

qeq ¼
0

1

0

0
B@

1
CA

but in this paper, we use

qeq ¼
0ffiffiffi
2
p

M0

0

0
B@

1
CA

to facilitate symbolic comparisons between CW and SSFP.
3.1. Single-spin CW solution

Substituting the matrices in Eqs. (17)–(19) for a single
spin system into Eq. (6), and applying the detection method
from Eq. (3), we get the measured signal s in the x–y plane:
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s ¼ M0

cB1ðDxT 2 þ iÞT 2

1þ ðDxÞ2T 2
2 þ ðcB1Þ2T 1T 2

; ð21Þ

which has real and imaginary parts:

sre ¼ M0

cB1T 2
2Dx

1þ ðDxÞ2T 2
2 þ ðcB1Þ2T 1T 2

ð22Þ

sim ¼ M0

cB1T 2

1þ ðDxÞ2T 2
2 þ ðcB1Þ2T 1T 2

: ð23Þ

Eqs. (22) and (23) are the measured signal from a single
spin system at steady state in a continuous wave NMR
experiment. This solution can also be directly computed
using the Bloch equations [31].

3.2. Solution of a single-spin system of pulsed NMR

experiments

Replacing Eq. (13) with the matrices in Eqs. (17), (18),
and (20) for a single spin system, and applying the detection
method from Eq. (3), we get the measured signal s at the
time point b in the x–y plane. Note that, in this case, B1 is
along the y-axis rather than the x-axis and the absorption
mode spectra will be the real part of the complex signal.

sre ¼ M0

e
�T R

T 2 1� e
�T R

T 1

� �
sin ðaÞ cos ðT RDxÞ � e

�T R
T 2

� �
Q1

ð24Þ

sim ¼ �M0

e
�T R

T 2 1� e
�T R

T 1

� �
sin ðaÞ sin ðT RDxÞ
Q1

; ð25Þ

where,

Q1 ¼ 1� e�
T R
T 1 cos ðaÞ � e�

2T R
T 2 e�

T R
T 1 � cos ðaÞ

� �
� e

�T R
T 2 1� e

�T R
T 1

� �
ð1þ cos ðaÞÞ cos ðT RDxÞ:

Using Eq. (12), we obtain the same magnetization at time
point a given by Gyngell [22]. These equations are the full
solution for the steady state of pulsed NMR experiments.
Note that for each repeat time, the signal is periodic in
Dx with period 1=T R.

Substituting the matrices from Eqs. (17), (18), and (20)
for a single spin system into Eq. (16), and applying the
detection method from Eq. (3), we get the approximate
measured signal at the time point b in the x–y plane:

sre ¼ M0 �
sin ðaÞT RT 2

T 2
R þ T 2

RðDxÞ2T 2
2 þ Q2

ð26Þ

sim ¼ �M0 �
sin ðaÞT RDxT 2

2

T 2
R þ T 2

RðDxÞ2T 2
2 þ Q2;

ð27Þ

where

Q2 ¼ 4T 1T 2 þ 2T RðT 1 þ T 2Þ þ 2T 1T 2
2T RðDxÞ2

� �
ðsin ða=2ÞÞ2:

Eqs. (24)–(27) apply for all flip angles used in SSFP exper-
iments. Carr [4] plots some approximate diagrams when
flip angles are over p=12 radians.
In order to observe the relation between CW and SSFP
solutions, we explore the situation in which the flip angle is
very small. In this case, sin ðaÞ � a and sin ða=2Þ � a=2.
Considering the relationship, Eq. (8), between the flip angle
a and the radio-frequency B1 field, we get the approximate
equations for the signal.

sre � M0 �
cB1T 2

1þ ðDxÞ2T 2
2 þ ðcB1Þ2T 1T 2 þ Q3

ð28Þ

sim � �M0 �
cB1DxT 2

2

1þ ðDxÞ2T 2
2 þ ðcB1Þ2T 1T 2 þ Q3

; ð29Þ

where,

Q3 ¼
1

2
ðcB1Þ2T RðT 1 þ T 2 þ T 1T 2

2ðDxÞ2Þ:
Comparing Eqs. (22) and (29), and Eqs. (23) and (28), if

T R � min
2

T 1ðcB1Þ2
;

2T 1T 2

T 1 þ T 2

 !
ð30Þ

the factor Q3 which broadens the signal can be ignored,
Eqs. (28) and (29) will become the same as Eqs. (23) and
(22). The real and imaginary parts are swapped because,
in this case, the rotation matrix rotates around the y-axis,
while the B matrix acts on the spin system along the x-axis.
From the condition on T R, we derive the condition,

a� 2

T 1cB1

; ð31Þ

on the flip angle.
Thus far, solutions for the steady state magnetization in

continuous wave and pulsed experiments have been given.
The possibility of approximating CW NMR experiments
with pulsed steady state experiments for single spin-1

2
sys-

tems has been explored. Under some conditions, the simu-
lation is very close to the CW NMR experiments. In the
next section, we analyze multiple-spin systems.

4. Double-quantum transitions of a 2-spin system

In this section, double-quantum transitions for coupled
spin systems in steady state are discussed. In the Liouville
formalism, double-quantum coherence of a 2-spin system
is detectable. The double-quantum transitions can be
obtained by observing the signal of the single quantum
transitions at the frequency of ðxA þ xBÞ=2. In this section,
we compare different methods of calculating double quan-
tum transitions.

In the previous section, the matrices and vectors for a
1-spin system are listed. Matrices for a 2-spin system can
be constructed based on the single spin system. A software
package in Maple has been developed to build matrices and
vectors for arbitrary spin systems. In this paper, we do not
write out the matrices.

4.1. Symbolic solution of continuous wave experiments

The size of a full basis for a 2-spin system is 16. We do
not consider the total magnetization, j0Þj0Þ, component,
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reducing the dimensions of the corresponding matrices
L;B;R to 15� 15.

Eq. (6) is used to calculate the steady state of CW exper-
iments, but it is difficult to directly compute symbolic qss

for a 2-spin system. Maple library functions could not com-
pute a simplified expression, because it was too large. How-
ever, forcing simplification at each step of (hand-coded)
Gaussian elimination used to solve the system does pro-
duce a useful answer.

The following method is used to get the strength of the
double quantum transitions of a 2-spin system. The signal
qss can be separated into real ðqrÞ and imaginary ðqiÞ parts.
After which the evolution equation

ðR þ iðL þ BÞÞðqr þ iqiÞ ¼ Rqeq ð32Þ
10 –3

18

20
similarly separates:

Rqr � ðL þ BÞqi ¼ Rqeq ð33Þ
ðL þ BÞqr þRqi ¼ 0: ð34Þ
14

6

In
te

ns
ity

16

12

10

8

All of the entries of qeq are real numbers, so qeq represents a
real vector. And all of components of the matrices and vec-
tors of the above equations are real. Solving the two equa-
tions, we get the following two linear systems:

ð1þR�1ðL þ BÞR�1ðL þ BÞÞqr ¼ qeq ð35Þ
ð1þR�1ðL þ BÞR�1ðL þ BÞÞqi ¼ �R�1ðL þ BÞqeq ð36Þ
2

B1

7,5002,500

4

0

10,0005,0000

500400200

10–3

14

700100 300
B1

16

600

12

6

2

0

10

0

18

In
te

ns
ity

8

4

SignalDQ

SignalDQApprox
On the other hand, considering the detection of a 2-spin
system, we only need the observable (first and fourth, in
our basis) components of qss to get the signal of double
quantum transitions, so we do not need to get the whole
solution of qss. At the same time, the signal of double quan-
tum transitions of a 2-spin system will be at the frequency
ðxA þ xBÞ=2 which means that the value of Dx is 0 in the
Liouville matrix L.

A Maple procedure was developed to implement manual
Gaussian elimination to solve the new linear systems. Due
to the fact that we need only the first and fourth elements,
it makes sense to start the Gaussian elimination at the end
of the matrix, the 15th element. For each step, the pivot
was chosen by inspection of the matrix elements, and the
Gaussian elimination proceeded. Using this procedure,
the signals of double quantum transitions of a 2-spin sys-
tem in CW experiments (B1 is along the x-axis.) are:

sre ¼ 0 ð37Þ

sim ¼ M0

8T 2cB1ðE1ðcB1Þ2 þ T 2
1T 2

2d
2 þ E5Þ

T 2
1T 4

2d
4 þ E2d

2 þ E3ðcB1Þ4 þ E4ðcB1Þ2 þ 4E5

; ð38Þ
Fig. 2. The intensity of the double quantum transition at the frequency
xAþxB

2
is a function of B1. Parameters: dAB ¼ 1500 Hz; T 1 ¼ 0:04 s;

T 2 ¼ 0:02 s; J ¼ 183 Hz.
where,
E1 ¼ 2T 1T 2
2E6

E2 ¼ 8T 1T 3
2þ 8T 2

1T 2
2þ 2T 1T 3

2ð2T 2
1þ T 1T 2þ T 2

2ÞðcB1Þ2þ 4T 4
2

E3 ¼ 4T 1T 2E1

E4 ¼ 8T 1T 2ð2T 2
1 þ 3T 2

2þ 5T 1T 2þ T 1T 2
2ð2T 1þ 3T 2ÞJ 2Þ

E5 ¼ 4ðT 1þ T 2ÞE6

E6 ¼ T 1T 2
2J 2þ T 1þ T 2;

where J is the coupling constant of spin A and spin B; d is
the difference of Larmor frequencies of spin A and spin B;
spin A and spin B have same relaxation times T 1 and T 2.
Yatsiv [26] gives the approximate expression, but Eq. (38)
is a full solution. Based on this equation, it is easily to ob-
serve the relationship of the double quantum transitions
with these factors such as the coupling constant, the
strength of the rf field, the relaxation times.
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When the coupling constant J is 0, according to Eq. (38),
the signal of the double quantum transition is:

simag;J¼0 ¼ M0

2cB1T 2

1þ T 1T 2ðcB1Þ2 þ ðdT 2=2Þ2
ð39Þ

which is the sum of signal of the wings of two independent
spin systems at the midpoint between them. When the cou-
pling constant J is going to the infinity, the signal will be:

simag;J¼1 ¼ M0
2cB1T 2

1þ T 1T 2ðcB1Þ2
ð40Þ

which is the same as the signal when d ¼ 0.
When B1 is zero, the signal will be 0. When B1 tends

toward infinity, saturation will appear and the signal will
also be 0. Fig. 2 shows the trend.

When substituting J ; T 1; T 2 and d with the parameters
of Fig. 2 to Eq. (38), the intensity of the double quan-
tum transition is a function of the variable B1 as the
following:

SignalDQ¼ 7:680101�10�5B3
1þ7:007729B1

2020634:314þ0:269143B2
1þ2:172261�10�6B4

1

:

ð41Þ

When B1 is small, the intensity could be approximate by a
cubic function:

SignalDQApprox¼ 3:800837�10�11B3
1þ3:468084�10�6B1:

ð42Þ

When d is zero, the intensity will be:

simag;d¼0 ¼ M0

2cB1T 2

1þ T 1T 2ðcB1Þ2
: ð43Þ
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Fig. 3. The intensity of the double quantum transition is a function of d.
Parameters: cB1 ¼ 1650 Hz; T 1 ¼ 0:04 s; T 2 ¼ 0:02 s; J ¼ 183 Hz.
When d tends toward infinity, the intensity will also tend
toward zero. Fig. 3 shows the trend.

Using numerical computation, spectrum can be plotted
out by functions Eqs. (6) and (3). The spectra of CW exper-
iments (Figs. 4 and 5) are plotted out as a function of rf
field and coupling constant so as to show the broadening
phenomena.

Calculations using the pulsed NMR can also be used to
observe the signal at the frequency xAþxB

2
by computing

Eqs. (13) and (16). The results (not shown) confirm that
the results of SSFP are very close to CW experiments under
small flip angle conditions.

5. Extension to multiple spin-1
2

systems

Eqs. (6), (13) and (16) give the general solutions of mul-
tiple spin-1

2
systems. These equations can be applied to

explore the spectrum, multiple quantum transitions, design
Fig. 4. The spectra of a coupled spin system with different B1. Parameters:
dAB¼ 1500 Hz; T 1¼ 0:04 s; T 2¼ 0:02 s; J¼ 183 Hz; cB1¼ 0:043;43;86;172;
344;688;1376;2173 Hz.

Fig. 5. The spectra of a coupled spin system with different coupling
constants. Parameters: dAB ¼ 1500 Hz; T 1 ¼ 0:04 s; T 2 ¼ 0:02 s; cB1 ¼
86 Hz; J ¼ 0; 80; 160; 320; 640; 1280; 2560; 5120 Hz.
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of pulse sequences, optimization problems. This section
shows the feasibility and cost to handle multiple spin sys-
tems by the Maple package.

Worvill calculated the saturation spectra of a three-spin
system using various models of the spin relaxation. In our
case, we have just used the simple random-field model, so
Fig. 6. Reproducing Worvill’s figures (Figs. 1–8) which are spectrum of
xB ¼ 613:36 Hz; xC ¼ 583:82 Hz; JAB ¼ 17:38 Hz; J AC ¼ 1:57 Hz; JBC ¼ 10:5
the spectra in Fig. 6 do not exactly match Worvill’s figures
(Figs. 1–8) [7]. However, the resemblance is close enough to
validate our method.

When calculating one point of the steady state, Eq. (6)
needs to compute a complex matrix inverse one time and
the multiplication of a complex matrix and a vector two
a 3-spin system [7] with different B1. Parameters: xA ¼ 634:05 Hz;
0 Hz; T 1 ¼ 1 s; T 2 ¼ 1 s; B1 ¼ 0:1; 10; 20; 40; 70; 150; 250; 500 nT.



Table 2
CPU time (s) of calculating 1k points for 3-, 4-, 5-spin systems

System CW
method

SSFP accurate
method

SSFP approximate
method

3-spin 56 190 160
4-spin 575 3841 2897
5-spin 10,031 102,586 52,483
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times; Eq. (13) needs to compute an exponential of a com-
plex matrix one time, the multiplication of a complex
matrix and a vector two times, and the addition of matrices
two times; Eq. (16) has the same cost as Eq. (6) plus two
times’ addition of matrices. The computational complexity
grows quickly in the Liouville space , since the dimension
of the matrices or the eigenvalues for a system of size is
4n. Table 2 shows the cost for 3-, 4-, and 5-spin systems.

6. Conclusions

In this paper, we have described and tested a formalism
for treating steady-state methods. One of the best tests is to
reproduce a number of CW experiments, but the method is
not restricted to this limit. The symbolic solutions of steady
state for the single spin system are given. The double quan-
tum transitions of continuous wave experiments is also cal-
culated out by the algebraic computation. A series of
spectrum for multiple spin systems are plotted out by dif-
ferent ways. All of these things show that steady state
pulsed NMR approximates CW experiments well. The flex-
ibility of our Maple tools 2 allow us to explore more com-
plicated spin systems with more sophisticated pulse
sequences. Along with the increase of number of spins,
the computational complexity grows quickly, so some
numerical methods such as BLAS, sparse matrix technique
should be applied to improve the efficiency. However, the
method has proved itself, so future work will apply it to
more complex systems.
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